Confronting Herschel observations and numerical simulations

نویسندگان

  • P. Tremblin
  • V. Minier
  • N. Schneider
چکیده

Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims. The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M16 and the Rosette molecular cloud. Methods. First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results. The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained simulations of the Antennae Galaxies: Comparison with Herschel-PACS observations

We present a set of hydro-dynamical numerical simulations of the Antennae galaxies in order to understand the origin of the central overlap starburst. Our dynamical model provides a good match to the observed nuclear and overlap star formation, especially when using a range of rather inefficient stellar feedback efficiencies (0.01 . qEoS . 0.1). In this case a simple conversion of local star fo...

متن کامل

Alma Observations of Starless Core Substructure in Ophiuchus

Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15 from the nearest Spitzer YSO. On...

متن کامل

Far-IR Detection Limits I: Sky Confusion Due to Galactic Cirrus

Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. Such background emission confusion will be important for infrared observations with relatively large beam sizes since the amount of fluctuation tends to increase with angular scale. In order to quantitively assess the effect of the background emission on the detection of point sources for c...

متن کامل

Ionisation impact of high-mass stars on interstellar filaments

Context. Ionising stars reshape their original molecular cloud and impact star formation, leading to spectacular morphologies such as bipolar nebulae around H ii regions. Molecular clouds are structured in filaments where stars principally form, as revealed by the Herschel space observatory. The prominent southern hemisphere H ii region, RCW 36, is one of these bipolar nebulae. Aims. We study t...

متن کامل

Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making

We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the posterior density for all unknown quantities, given the observations. This density is explored by a Markov Chain Monte-Carlo sampling technique based on a Gibbs loop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013